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On the stability of viscous plane Couette flow 

By J. W. DEARDORFF 
National Center for Atmospheric Research, Boulder, Colorado 

(Received 10 December 1962) 

The problem of the stability of plane Couette flow to infinitesimal disturbances is 
carried numerically to larger Reynolds numbers than heretofore. The flow is 
definitely stable up to R = 1430, although at Reynolds numbers in this vicinity 
plane Couette flow has been observed experimentally to be turbulent. Observa- 
tions on boundary-layer instability suggest this to be the source of turbulence in 
plane Couette flow channels. 

1. Introduction 
The simplest kind of Couette flow is that flow between parallel planes in which 

no average pressure gradient exists in the flow direction. Such a flow may be 
maintained if one of the planes moves uniformly with respect to the other. If the 
flow is laminar, a constant shear must exist within the fluid when the ‘no-slip ’ 
boundary conditions apply. 

Whether or not laminar plane Couette flow is always stable to infinitesimal 
disturbances is still an open question. This situation may seem surprising in view 
of the fact that plane Couette flow is the simplest conceivable kind of shear flow 
and has therefore received much study in the past half century. The latest linear 
analysis, by Gallagher & Mercer (1962), has indicated this flow to be stable for 
Reynolds numbers (based upon half-channel width and half boundary-speed 
difference) smaller than about 300, and probably stable for Reynolds numbers 
considerably larger. In addition, investigations by Wasow (1953) and Zondek & 
Thomas (1953) have shown it to be stable at infinitely large Reynolds numbers. 
Consequently, it  has often been stated that plane Couette flow is stable at any 
Reynolds number. 

A more cautious conclusion was given by Lin (1955, p. 11) that ‘all existing 
investigations tend to show that the flow is stable’. Caution is advisable here 
because not all Reynolds numbers and wave-numbers have yet been considered 
fully. The reason for this is that the frequency equation which leads to the eigen- 
values is far too transcendental, except in certain limiting cases, to be solved by 
any but numerical means. As the Reynolds number increases, so does the amount 
of necessary numerical computation. 

Experimentally, plane Couette flow has been observed to be turbulent 
by Robertson (1959) and Reichardt (1959) at a sufficiently large Reynolds 
number. Though an exact value a t  which the flow ceases to be laminar has not 
been determined, it lay somewhere between 600 and 1450 for Reichardt’s 
measurements. 
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The purpose of this study is to extend the linearized stability analysis to a 
sufficiently large Reynolds number to be able to conclude definitely whether or 
not the observed turbulent plane Couette flow can be attributed to the growth 
of unstable, infinitesimal disturbances in laminar plane Couette flow. Such a 
study has become feasible with the availability of automatic digital computers 
of large storage capacity. t 

2. Method of approach 
Let u be the velocity component in the x-direction, which is in the direction of 

the laminar plane Couette flow. Let v be the velocity component in the y-direction, 
which is toward or away from the walls. Let y = 0 midway between the walls, 
which are a distance 21 apart. Let the wall at y = 1 move at a speed of U,, and 
that at y = - 1 with a speed of - U,. All quantities in the hydrodynamic equa- 
tions will be made non-dimensional by using l as the representative length, and 
U, as the representative speed. 

The mean laminar flow is then given by 
- 
'u = Y, ? = O  ( - l < y < l ) ,  

and the total flow by u = U+U', v = v'. 

The fluid is assumed incompressible, and only two-dimensional disturbances 
are considered because it has been shown by Squire (1933) that if an infinite- 
simal, incompressible three-dimensional disturbance becomes unstable at some 
Reynolds number, a two-dimensional one will become so at a smaller Reynolds 
number. 

The equations are linearized, pressure is eliminated through cross-differentia- 
tion of the respective Navier-Stokes equations, and the disturbance 

(1) v' = O(y) &(z-ct) 

is inserted into the resulting linear and homogeneous equation. This leads to the 
following simplified form of the Orr-Sommerfeld equation (Lin 1955, p. 7) 

[d2/dy2 - a2 + iaR(c - y)] (d2/dy2 - a2) 6(y) = 0,  (2) 

where a = 2nl/L, L is the wavelength of the disturbance in the x-direction, 
R = U,l/v is the Reynolds number, v is the kinematic viscosity, c = c,+ ici is the 
wave speed which may be complex, and 6(y) may also be complex. If ci > 0 the 
flow is unstable and the disturbance initially grows exponentially with time; if 
ci < 0 the flow is stable. The no-slip boundary conditions are 

6 = 0 = d8/dy a t  y = 1. 

A trial-and-error numerical method was used to solve equation (2) approxi- 
mately for the eigenvalues cr and ci. The space between walls was subdivided into 
n + 1 intervals. Equation (2) was split into real and imaginary parts, and the two 
resulting equations in finite-difference form were applied at each of the n grid 

7 The numerical results presented herein were obtained with the IBM 709 machine of 
the University of Colorado and the IBM 7090 machine of the National Bureau of Standards, 
Boulder, Colorado. 



O n  the stability of viscous plune Gouette flow 625 

points. These, with the addition of the four boundary conditions, give a system of 
2n + 8 linear, homogeneous equations for which a solution exists only if the 
characteristic determinant vanishes. This determinant, of size N = 2n + 8, is 
developed in the Appendix. 

It is known that for sufficiently small Reynolds numbers c, = 0, i.e. the 
elementary disturbance moves with a speed equal to that of the basic flow at mid 
channel. In  this case the direct approach used here is somewhat efficient; for with 
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FIGURE 1. Curves of the logarithm of the determinant us Reynolds number 
for various values of c,. 

c, set to zero, ci set at a sufficiently negative value, and a chosen at some value 
between 1 and 20, say, determinant computations for various values of R will 
always disclose some determinant whose value is much closer to zero than those 
computed with slightly differing R. R may then be varied slightly until a deter- 
minant has been computed with a value arbitrarily close to zero. However, at  
higher Reynolds numbers c, + 0, and the proper value for c, must be guessed with 
rather high accuracy, in the approach used here, before a scan of determinant 
values with varying R will even disclose the near presence of a solution. Figure 1 
indicates the inefficiency of this approach. Each point represents the evaluation 
of one N x N determinant. Only for c, rather close to its eigenvalue (c, s 0.754) 
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does the graph disclose the presence of a solution corresponding to the values 
selected for a and ci. This difficulty is enhanced by the fact that the determinant 
is always of the same sign. Nevertheless, this approach proved satisfactory since 
the machine time necessary to evaluate each determinant was of the order of 
4 sec. 

3. Results 
Results of the computations for ci are shown in figure 2 along with the results 

of Gallagher & Mercer (1962). The machine programme was checked by com- 
parison with their results at five points for ci = - 0.5 and excellent agreement 
obtained. No attempts were made to locate any eigenvalues other than those 
which occur for the smallest value of R. The curve for ci = - 0.06 was obtained 
with determinants of size 150 x 150, and the rest with determinants of size 
100 x 100. The fact that the determinants used here were considerably larger 
than the 25 x 25 matrices employed by Gallagher & Mercer probably accounts 
for the small discrepancy between the two at ci = -0.2. Computations for a 
given ci were carried on for increasing values of a only until the minimum value 
of R had been established. They were not carried out for ci less negative than 
- 0.06 because the corresponding minimum value of R, N 1430, nearly equals the 
value at which plane Couette flow has been observed to be turbulent. The trend 
of these ci values supports the belief that only as aR approaches infinity does ci 
approach zero. 

Isopleths of c, are sketched in figure 3. Those in the lower left portion of the 
figure were obtained from the data of Gallagher & Mercer (1962), who have shown 
that for each value of c, greater than zero there exists a corresponding mirror 
image less than zero. Only the positive values of G, are shown in figure 3. This 
figure tends to support the conclusion of Hopf (1914) and others that as 

aR -+ co, lc,l 3 1. 
The question of whether the finite determinants employed were large enough 

can be partially answered from inspection of figure 4. For N = 150, the Reynolds 
number at which the eigenvalues exist for a = 16, is about 2 yo larger than the 
asymptotic value one might estimate (R z 750), and is about 13 % too large for 
N = 100. Thus the curves for ci computed here should be shifted somewhat 
towards smaller R. The arrow pointing to the left in figure 2 indicates the approxi- 
mate correction for the point ci = - 0.08, a = 16. The effect of truncation error 
upon the values of c, in figure 3 is such that the true values, for large aR, lie 
slightly to the right of those plotted. 

4. Conclusions 
The results given here definitely indicate that laminar plane Couette flow is 

stable to infinitesimal disturbances for Reynolds numbers exceeding those at 
which turbulent plane Couette flow has been observed experimentally, and give 
further support to the belief that laminar plane Couette flow is stable for all 
finite Reynolds numbers. This flow thus probably belongs in the same category 
as flow through a circular pipe, which is turbulent at a sufficiently large Reynolds 
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FIGURE 2.  Contours of ci. Curves at lower left are from 
Gallagher & Mercer (1962). 
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number although all stability analyses have indicated the fully developed 
parabolic profile to be stable (Lin 1955, p. 98). 

As for possible explanations of the observed turbulent velocity profiles in 
Couette flow channels, Stuart (1958) has suggested that if finite-amplitude 
disturbances are considered, plane Couette flow may be unstable. However, 
theoretical investigation of this possibility has not. yet yielded any definite answer 
(Watson 1960). Schlichting (1932) has considered the boundary-layer instability 
of a fluid at rest next to a surface which is suddenly caused to move a t  a constant 
speed. His analysis shows instability at a particular Reynolds number based 
upon the height of the boundary layer which develops, but neglects both the 
downstream growth of the boundary layer and the presence of disturbances in 
the free stream. 

1 
I 
;E- 

21 

These neglected factors may be taken into account from empirical studies, 
Consider the boundary layers which grow with distance as the fluid moves into 
the kind of Couette flow channel used by Robertson (1959) or Reichardt (1959), 
figure 5. It is reasonable to expect little or no shear within the fluid as it first 
enters the channel, so that the speed of the entering air is U, from continuity 
considerations. Initially either one of the two boundary layers which develop is 
of the flat-plate, zero pressure-gradient type which has been studied experi- 
mentally and is reported by Hinze (1959, p. 463). The critical value of Reynolds 
number R, (based upon distance from the leading edge or channel entrance) at 
which the flow ceases to be laminar is found to be smaller the larger the relative 
intensity of turbulence (u~)* /U,  of the entering stream. According to Dryden 
( 1947) 

when the relative intensity of the turbulence is 3 7,. In terms of the Reynolds 
number defined earlier we may express (3) as 

(R,)crit. ( U,/V) (X)crit. z lo5. (3) 

(B)crit. = (J/z) (RJcrit.  z 105Z/x. 

Reichardt’s (1959) measurements were taken with x = 9-6 m and I = 6 cm so that 
x/Z could not have exceeded 160 in this case. If we let x/Z = 100, (&it. becomes 
about 1000 which is the correct order of magnitude, although at this large a ratio 
of x/l both boundary layers must be interacting strongly. 

Measurements are lacking as to what the mean velocity profile is like at the 
entrance of a plane Couette flow channel, nor has the intensity of turbulence in 
the entry region ever been reported. However, if the instability within such a 
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flow channel is of the boundary-layer type, which seems very likely, the critical 
Reynolds number will depend strongly upon the channel entrance conditions. 

The writer expresses his gratitude to Mrs C. Jefferies of the National Center for 
Atmospheric Research for programming the numerical computations of this 
study. 
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Appendix 
Upon expressing O(y) as v, + ivi, equation (2) becomes 

(d2/dy2 - a2 - aRci) (d2/dy2 - a2) v, - aR(c, - y) (d2/dy2 - a2) vi = 0,  (4a)  

Then upon expansion, approximation of derivatives by use of central differences, 
and regrouping of terms, equations (4 )  centred at thejth grid point become 

(d2/dy2 - a2 - ERc~)  (d2/dy2 - a') ~i + ~ R ( c ,  - y) (d2/dy2 - a') V ,  = 0. ( 4 b )  

v,(j+2)-alv,(j+ l>+a,v,(j)-a,v,(j- l)+v,(j-Z) 

-a3(c,.-jA)wi(j+ l)+~,(c,-jA)vi(j)-a,(c,-jA)vi(j- 1 )  = 0,  ( 5 a )  

+ a3(c, - jA)  v,(j + 1 )  - a4(c, -jA) v,(j) + a,(c, - jA)  v,(j - 1) = 0,  ( 5  b )  

Vi(j + 2) - a&j + 1 )  + a z q ( j )  - U l W i ( j  - 1 )  + Vi(j - 2) 

where A = l/(n + 1 )  is the finite interval in the y-direction, and 

a, = aA2Rci + ~ ( E A ) ~  + 4,  

a2 = a3A4Rci + ( E A ) ~  + 2(aA2Rci + 2a2A2) + 6 ,  

a, = aA2R, a, = a3A4R+2aA2R. 
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For convenience in machine programming, the origin in y was relocated at  the 
lower boundary rather than at mid channel for equations (5), and R, a, c, and ci 
were defined in terms of total distance between boundaries and total velocity 
difference. These quantities were later converted to comply with the method of 
non-dimensionalization described in 0 2 .  The lower boundary is then at j = 0 and 
the upper boundary at  j = n + 1. The boundary conditions in finite-difference 
form then are 

v,(n+ 1)  = 0,’ 

(6) i 
VJO) = 0 ,  

V,(O) = 0, ?Ii(?%+ 1) = 0,  

vT( - 1) - v,(l) = 0, 

vi( - 1) -v&l)  = 0, 

where the argument now refers to the value of j. If we let 

v,(n + 2 )  - v,(n) = 0, 

v,(n+ 2 )  - vi(n) = 0, 

c,-jA = c j  (j = 1, ..., n), 

the coefficients of wr, wi in equations (5) and (6) form the following determinant: 

0 0  0 - 1  0 0 0 0 0 0 0 ... 
1 0  0 0 - 1  0 0 0 0 0 0 ... 
0 1  0 0 0 0 0 0 0 0 0 ... 
0 0  1 0 0 0 0 0 0 0 0 ... 
0 -al -c1u3 u2 ClU4 -a, -c1u3 1 0 0 0 ... 
1 c1u3 -a,  -c1u4 u2 c1 a3 -a1 0 1 0 0 ... 
0 1  0 -ul -c2a3 u2 c2u4 -ul -czu3 1 0 ... 
0 0  1 c2u3 -a, -c2u4 u2 c2u3 -ul 0 1 ... 

... 0 0 1 0 0 0  

... 0 0 0 1 0 0  

... -1 0 0 0 1 0 

... 0 -1 0 0 0 1 

The first column contains coefficients for v,( - I), the second column the coef- 
ficients for vi ( -  l) ,  the third column the coefficients for w,(O), etc. The first and 
last four rows constitute the lower and upper boundary conditions, respectively, 
on v, and wi, and the remaining rows constitute the application of ( 5 )  at interior 
grid points. 


